Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology
De Graaf et al. (2009): Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology
This paper deals with computational modeling in nutritional sciences:
Typically, compartmental modeling approaches are used to describe the absorption, distribution, and elimination of a nutrient. Common to most of these models is the high level of aggregation, where the body is adequately described by only a few compartments. Together, these models aim to provide a rational basis for the determination of the nutritional requirements of the body, and for the understanding of differences in requirements (both locally for organs and at the whole body level) for different micronutrients.
These traditional models do not suffice to "understand and rationally manipulate the complex relationship between nutrition and health":
[U]nderstanding how nutrition impacts the mechanisms underlying insulin resistance requires a quantitative analysis and description of a multiscale, highly coupled regulatory network that includes thousands of components, ranging over subcellular to whole body levels of organization and spanning time scales from seconds to years.
"[I]n developing our vision of what is needed in the coming years", the authors "review several representative models that have successfully addressed key nutritional questions and together may help point the way to a more integrative modeling approach":
First, we review modeling approaches for processes at the cellular level describing the biochemical processes (i.e., signaling and metabolic pathways) that operate to convert food ingredients into energy and building blocks for the cell as the fundamental unit of life. Insight into these processes teaches us how metabolism is regulated at its most basic level. Furthermore, modeling at the cellular level provides the entry point to considering the vast quantity and complexity of -omics data. Second, we review the use of metabolic flux analysis (MFA) as a framework for the quantitative analysis of material fluxes within the single cell as well as between different cell populations and organs, up to the whole body level. Thus, MFA forms a natural bridge between different levels of organization and different time scales. Thirdly, we review compartmental models of lipoprotein metabolism, because lipoproteins are the major mediators of lipid trafficking between organs, and many processes linked with lipids are associated with the metabolic syndrome, which includes cardiovascular diseases, obesity, and insulin resistance, modern plagues in industrialized societies. Finally, we review mathematical models of body weight and composition regulation and the complex relationship with macronutrient metabolism at the whole body level. Modeling at this whole body physiological level demonstrates the importance of considering long time scales that are characteristic of chronic diseases like obesity and metabolic syndrome.
The authors conclude:
From this review and discussion it is apparent that two issues in computational modeling in nutritional sciences now need major attention. First, the complex biological research questions, typical for nutritional sciences, often require a multilevel modeling approach. However, this is a time and resource intensive effort that is best undertaken within a large research consortium. Second, a central need exists for models and experimental data that bridge the microscopic and the macroscopic levels. Most animal disease models or human nutritional studies currently provide tissue-specific -omics data, whereas cell cell interaction data is becoming increasingly available from in vitro systems. To interpret this new hybrid of wet lab data, dedicated computational models are required to deal with cell-specific expression data in a physiological context. We identified the middle-out strategy as a promising one for generating the required nutritional computational models and the virtual patient concept is a convenient way to deal with the large individual variation typical of nutritional studies. To characterize (sub) groups of individuals, much will be gained by a careful classification and characterization of disease (sub) phenotypes. Finally, the use of biomarker signatures derived from integrated -omics data has a potential to bridge the microscopic and macroscopic levels. In conclusion, we have put available computational modeling approaches for nutrition into perspective, and we have suggested the essential elements of an approach for future fully integrated systems biology models for application in nutritional sciences.