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1 Introduction

This paper deals with a variant of combinatorial optimization problems that
considers uncertainty of some of its parameters. Combinatorial optimization
problems are about selecting a subset of a set of discrete elements so that a
given number of conditions are met and the solution fulfils an optimality cri-
terion. Special variants of combinatorial optimization problems, such as linear
programs, deal with systems of equations and inequalities which are to be solved
in an optimal way. Sometimes it may be useful to allow the parameters of these
problems to float to a certain extent since it is not always clear what exact value
a factor in one of the inequalities will have; it is possible that only a range in
which this factor can be is given.

Although classical combinatorial optimization problems have been thoroughly
investigated and a bunch of well-known methods for solving them are known,
they are still a subject of research. Even more so are problems in which only
ranges for the factors are defined instead of exact values. In the course of the
decades several possible approaches have been published, and the rather ele-
gant method of Dimitris Bertsimas and his colleagues from MIT called ”Robust
Optimization” is still rather young.

If the parameters are integers, the related variant of this method is called
”Robust Discrete Optimization”. The following paper is supposed to be an
easy-to-understand introduction to this topic.

2 Combinatorial optimization problems

Often combinatorial optimization problems can be represented by systems of in-
equalities the optimal solution to which is to be found by a computer program.
There is usually a condition saying that some product has to be maximized or
minimized, and the solution should be as close to the maximum or the minimum
of this product as possible.

The general form of such a problem looks as follows:

max c′x where
Ax ≤ b
l ≤ x ≤ u (1)
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In these formulas, c, x, l and u are vectors of dimension m, and A is a m ∗ n
matrix. The vector c′ is the transposed vector of c, which can be regarded as
the cost vector. The vector x is the solution vector. The costs are defined in
advance. What the program is supposed to find is a solution vector that makes
the scalar product of cost vector and solution vector as great as possible, while
the individual items of the solution vector have to be greater or equal to the
corresponding items in the given vector l (lower bound) and lower or equal to
the corresponding items in the given vector u (upper bound). The scalar prod-
uct of each row of A with the vector x is computed and it is compared to the
corresponding item in vector b. Only if all of these equations are fulfilled, the
solution is valid.

Such combinatorial optimization problems can be automatically solved by com-
puters using well researched methods such as linear programming or integer
linear programming (in case the solution vector x may contain only integers),
respectively. Solution algorithms such as the Simplex method, Benders de-
composition and Dantzig-Wolfe decomposition can be found in textbooks on
combinatorial optimization, e.g. (8).

3 Optimization problems with uncertainty

Uncertainty in an optimization problem can appear in the three following forms:

1. The cost vector c is not precisely defined

2. The coefficients of the matrix A are not precisely defined

3. The vector b is not precisely defined

Of course two or all three cases may appear at the same time.

Regarding the vector b, no special new algorithm is needed to solve problems
involving its uncertainty, since it suffices to introduce a new variable xn+1 and
write Ax − bxn+1 ≤ 0, thus augmenting the matrix A to include b.

In general uncertainty can be expressed either as a statistical distribution or
as a range. In the former case, the statistical approach that is explained in the
next chapter (stochastic programming) can be applied. In the latter case, the
robust approaches by Bertsimas and others come to play.
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4 Statistical approach

The statistical approach (stochastic programming) was already proposed in the
1950s by George B. Dantzig. (7) This approach requires that the distribution
function of the data must be known in advance. Otherwise it will not lead to
an optimal result. This can be a real problem in many cases since it is often
difficult to obtain a statistical model of the data. For this reason the statis-
tical approach is not suitable if no accurate model is known, which is usually
the case in assessing customer demand for a product, for example. Estimation
errors have especially dire consequences in industries with long production lead
times, such as the automotive, retail and high-tech industries: They result in
stockpiles of unneeded inventory or lost sales and customers’ dissatisfaction.

Moreover, another disadvantage of stochastic programming is that the size
of the resulting deterministic model increases drastically as a function of the
number of scenarios, making the running time exponential. These two draw-
backs are the reason why not everyone just uses the statistical approach, but
why some researchers have tried to come up with alternatives such as robust
optimization. Research has further been motivated by a recent increase in an
demand for such an alternative due to volatile customer tastes, technological
innovation and reduced product life cycles.

5 Robust optimization

The rest of this paper is going to be about robust optimization. Robust op-
timization is the approach that was chosen by Bertsimas, and his robust op-
timization method from 2002 is based on it. But Bertsimas was not the first
person to develop such an approach. There were several predecessors.

5.1 Soyster’s approach

Soyster’s approach (1973) deals with uncertain, also called fuzzy, parameters in
the matrix A. (1) The robust formulation of this approach is as follows:

max c′x where
∑

j aijxj +
∑

j∈Ji
âijyj ≤ bi ∀i

−yj ≤ xj ≤ yj ∀i
l ≤ x ≤ u
y ≥ 0 (2)
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Ji stands for the set of numbers indicating the coefficients that are subject
to parameter uncertainty.

Instead of the simple set of inequalities Ax ≤ b this set of inequalities con-
tains the more complicated set of inequalities

∑
j aijxj +

∑
j∈Ji

âijyj ≤ bi,
which means that another product is added. This product signifies the uncer-
tainty. The values of yj have to be chosen in such a way that for all i, the
condition −yj ≤ xj ≤ yj holds.

We see that Soyster’s approach considers column-wise uncertainty since there
is one yj for each column j.

The objective is to maximize the product c′x. For an optimal solution x∗ the fol-
lowing property holds: |x∗

j | = yj . For this reason,
∑

j aijx
∗
j +

∑
j∈Ji

âij |x
∗
j | ≤ bi

for all i must hold. Since
∑

j aijx
∗
j+

∑
j∈Ji

ηij âijx
∗
j ≤

∑
j aijx

∗
j+

∑
j∈Ji

âij |x
∗
j | ≤

bi, the solution is provably robust: it works for all values aij may take.

Soyster’s approach results in a linear optimization problem with 2n variables
and m + 2n constraints.

The drawback of Soyster’s method is that in many cases, the obtained solu-
tion is not the best one possible. One may call Soyster’s method very con-
servative: The detected solution is valid, no matter what value in the given
range the coefficients in the matrix A take, but in many cases it is far from the
optimum (which, however, would not be valid for any possible combination of
parameters).

5.2 Ben-Tal’s approach

The problem of over-conservatism which Soyster’s approach exhibitis was ad-
dressed by Ben-Tal and Nemirovski in 1998. (3) (4) (5) Their approach allowed
the uncertainty sets for the data to be ellipsoids. They proposed efficient al-
gorithms to solve convex optimization problems under data uncertainty, which
however lead to robust formulations that involve conic quadratic problems, and
therefore these methods cannot be directly applied to discrete optimization.

In Ben-Tal and Nemirovski’s approach, the formulation is modified as follows:

max c′x where
∑

j aijxj +
∑

j∈Ji
âijyij + Ωisqrt(

∑
j∈Ji

â2
ijz

2
ij) ≤ bi ∀i
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−yij ≤ xj ≤ yij ∀i
l ≤ x ≤ u
y ≥ 0 (3)

We see from these formulae that Ben-Tal and Nemirovski’s approach also has
the advantage over Soyster’s approach that now no longer only column-wise
uncertainty is considered, but y becomes a matrix which specifies uncertainty
for each element of the matrix a separately.

The probability that constraint i is violated is at most exp(−Ω2
i /2) in this

approach.

The resulting optimization problem is a conic optimization problem with n+2k
variables and m + 2k constraints.

5.3 Kouvelis and Yu’s approach

Kouvelis and Yu proposed a framework for robust discrete optimization mini-
mizing the worst case performance under a set of scenarios for the data. (2)
However, many problems become NP-hard in that framework.

5.4 Bertsimas’ approach

Bertsimas’ approach from the year 2002 has a polynomial running time when
applied to problems that are polynomially solvable in their original non-robust
form. (6) Furthermore, it allows to control the degree of conservatism of a
solution in terms of probabilistic bounds of constraint violation. This means
that there is an additional parameter Γi which controls how many columns of
the row i of the matrix a may take values in the given range; all other values
are considered fixed.

This innovation has the effect that it is possible to find better solutions than
using Soyster’s approach. However, these solutions are less conservative, that
is they are not feasible with all values the parameters in the matrix a can take.

The parameter Γi actually consists of two parts. The number before the comma
signifies how many parameters may change in their full range, from minimum to
maximum, while the number after the comma signifies how strong the deviation
of one additional parameter may be. (For instance, Γi = 8.36 means that in
constraint i, at most 8 parameters may differ from the lower up to the upper
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bound, and one ninth parameter may deviate by 36 percent of the total interval.)

The original, non-linear formulation of the optimization problem is as follows:

max c′x where
∑

j aijxj + max{Si∪{ti}}{
∑

j∈Si
âijyj + (Γi − ⌊Γi⌋)âitiyt} ≤ bi ∀i

−yj ≤ xj ≤ yj ∀i
l ≤ x ≤ u
y ≥ 0 (4)

Si is a subset of Ji that points to just as many coefficients as specified by the
part of Γi before the comma. Another coefficient ti may change by Γi − ⌊Γi⌋
times the officially allowed deviation.

Bertsimas provides a conversion of this non-linear formulation to a linear opti-
mization problem:

max c′x where
∑

j aijxj + ziΓi +
∑

j∈Ji
pij ≤ bi ∀i

zi + pij ≥ âijyj ∀i, j ∈ Ji

−yj ≤ xj ≤ yj ∀j
lj ≤ xj ≤ uj ∀j
pij ≥ 0 ∀i, j ∈ Ji

yj ≥ 0 ∀j
zi ≥ 0 ∀i (5)

This model contains n + k + 1 variables and m + k + n conditions, where
k =

∑
i |Ji|.

It is possible to show that this approach not only finds an optimal solution
if at most ⌊Γi⌋ coefficients in row i of the matrix change, but also that there is
a high probability that this solution is also valid in a general case.

The parameter Γi controls the trade-off between the probability that the so-
lution is infeasibleand the effect on the objective function of the problem. Bert-
simas calls this the ”price of robustness”.

A similar approach can be taken if the cost vector c is fuzzy. In this case,
the objective max c′x is transformed to
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max c′x + max
∑

S0|S0∈J0,|S0|≤Γ0
dj |xj |

and this can also be converted to a linear formulation.

5.5 Example: Knapsack

As a demonstration how Bertsimas’ approach to robust optimization works, the
following chapter is a summary of the knapsack example from his paper from
2002. (6)

The original knapsack problem is a mixed integer program. One or several
items whose weights are defined by the vector w have to be chosen. The total
weight must not exceed b and the costs should be as large as possible.

max c′x where
∑

i∈N wixi ≤ b
xi ∈ 0, 1

A variant of this problem for which it would make sense to use robust opti-
mization in order to solve it would be the one in which the weights are not
exactly known, but only ranges are given. If S is a subset of the set of uncertain
coefficients J containing ⌊Γ⌋ values, t is a coefficient that does not appear in
S, and δi are coefficients specifying the uncertainty of the weights, this new
problem can be formulated as follows:

max c′x where
∑

i∈N wixi + max{S∪{t}|S⊆J,|S|=⌊Γ⌋,t∈J\S}
∑

j∈S δjxj + (Γ − ⌊Γ⌋)δtxt ≤ b
xi ∈ 0, 1

Figures 1 and 2 show the effect of changing the size of the set J on the validity
of the solution.
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Figure 1: Probability of the validity of the solution for n = |Ji| = 10, from
Bertsimas 2002
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Figure 2: Probability of the validity of the solution for n = |Ji| = 100, from
Bertsimas 2002
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